# Copyright 2019 Zuru Tech HK Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classifier Context."""
from __future__ import annotations
from typing import TYPE_CHECKING, Optional, Tuple
import tensorflow as tf # pylint: disable=import-error
from ashpy.contexts.context import Context
from ashpy.modes import LogEvalMode
if TYPE_CHECKING:
from ashpy.losses.executor import Executor
from ashpy.metrics import Metric
from ashpy.losses import ClassifierLoss
[docs]class ClassifierContext(Context):
""":py:class:`ashpy.ClassifierContext` provide the standard functions to test a classifier."""
[docs] def __init__(
self,
classifier_model: tf.keras.Model = None,
loss: ClassifierLoss = None, # ?: Do we really need to default these values to None?
dataset: tf.data.Dataset = None,
metrics: Tuple[Metric] = None,
log_eval_mode: LogEvalMode = LogEvalMode.TEST,
global_step: tf.Variable = tf.Variable(
0, name="global_step", trainable=False, dtype=tf.int64
),
checkpoint: tf.train.Checkpoint = None,
) -> None:
r"""
Instantiate the :py:class:`ashpy.contexts.classifier.ClassifierContext` context.
Args:
classifier_model (:py:class:`tf.keras.Model`): A :py:class:`tf.keras.Model`
model.
loss (:py:class:`ashpy.losses.executor.Executor`): Loss function,
format f(y_true, y_pred).
dataset (:py:class:`tf.data.Dataset`): The test dataset.
metrics (:obj:`list` of [:py:class:`ashpy.metrics.metric.Metric`]): List of
:py:class:`ashpy.metrics.metric.Metric` with which to measure training
and validation data performances.
log_eval_mode (:py:obj:`ashpy.modes.LogEvalMode`): Models' mode to use when
evaluating and logging.
global_step (:py:obj:`tf.Variable`): tf.Variable that keeps track of the
training steps.
checkpoint (:py:class:`tf.train.Checkpoint`): checkpoint to use to keep track of
models status.
"""
super().__init__(metrics, dataset, log_eval_mode, global_step, checkpoint)
self._classifier_model = classifier_model
self._loss = loss
self._validation_set: Optional[tf.data.Dataset] = None
self._training_set: Optional[tf.data.Dataset] = None
@property
def loss(self) -> Optional[Executor]:
"""Retrieve the loss value."""
return self._loss
@property
def classifier_model(self) -> tf.keras.Model:
r"""
Retrieve the Model Object.
Returns:
:py:class:`tf.keras.Model`: The classifier model.
"""
return self._classifier_model
@property
def validation_set(self) -> Optional[tf.data.Dataset]:
"""
Return the validation set.
Returns:
:py:class:`tf.data.Dataset`: The validation set.
"""
return self._validation_set
@validation_set.setter
def validation_set(self, _validation_set: tf.data.Dataset) -> None:
"""
Set for the validation set.
Args:
_validation_set (:py:class:`tf.data.Dataset`): validation set.
"""
self._validation_set = _validation_set
@property
def training_set(self) -> tf.data.Dataset:
"""
Return the training set.
Returns:
:py:class:`tf.data.Dataset`: The training set.
"""
return self._training_set
@training_set.setter
def training_set(self, _training_set: tf.data.Dataset) -> None:
"""
Set the training set.
Args:
_training_set ( :py:class:`tf.data.Dataset`): training set to
set.
"""
self._training_set = _training_set