ClassifierLoss¶
Inheritance Diagram
-
class
ashpy.metrics.classifier.
ClassifierLoss
(name='loss', model_selection_operator=None, logdir=PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/ashpy/checkouts/master/docs/source/log'))[source]¶ Bases:
ashpy.metrics.metric.Metric
A handy way to measure the classification loss.
Methods
__init__
([name, model_selection_operator, …])Initialize the Metric. update_state
(context)Update the internal state of the metric, using the information from the context object. Attributes
best_folder
Retrieve the folder used to save the best model when doing model selection. best_model_sel_file
Retrieve the path to JSON file containing the measured performance of the best model. logdir
Retrieve the log directory. metric
Retrieve the tf.keras.metrics.Metric
object.model_selection_operator
Retrieve the operator used for model selection. name
Retrieve the metric name. sanitized_name
all / are _. -
__init__
(name='loss', model_selection_operator=None, logdir=PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/ashpy/checkouts/master/docs/source/log'))[source]¶ Initialize the Metric.
Parameters: - name (str) – Name of the metric.
- model_selection_operator (
typing.Callable
) –The operation that will be used when model_selection is triggered to compare the metrics, used by the update_state. Any
typing.Callable
behaving like anoperator
is accepted.Note
Model selection is done ONLY if an operator is specified here.
- logdir (str) – Path to the log dir, defaults to a log folder in the current directory.
Return type: None
-