SUNet

Inheritance Diagram

Inheritance diagram of ashpy.models.convolutional.unet.SUNet

class ashpy.models.convolutional.unet.SUNet(input_res, min_res, kernel_size, initial_filters, filters_cap, channels, use_dropout_encoder=True, use_dropout_decoder=True, dropout_prob=0.3, encoder_non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.LeakyReLU'>, decoder_non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.ReLU'>, use_attention=False)[source]

Bases: ashpy.models.convolutional.unet.UNet

Semantic UNet.

Methods

__init__(input_res, min_res, kernel_size, …) Build the Semantic UNet model.

Attributes

activity_regularizer Optional regularizer function for the output of this layer.
dtype
dynamic
inbound_nodes Deprecated, do NOT use! Only for compatibility with external Keras.
input Retrieves the input tensor(s) of a layer.
input_mask Retrieves the input mask tensor(s) of a layer.
input_shape Retrieves the input shape(s) of a layer.
input_spec Gets the network’s input specs.
layers
losses Losses which are associated with this Layer.
metrics Returns the model’s metrics added using compile, add_metric APIs.
metrics_names Returns the model’s display labels for all outputs.
name Returns the name of this module as passed or determined in the ctor.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
outbound_nodes Deprecated, do NOT use! Only for compatibility with external Keras.
output Retrieves the output tensor(s) of a layer.
output_mask Retrieves the output mask tensor(s) of a layer.
output_shape Retrieves the output shape(s) of a layer.
run_eagerly Settable attribute indicating whether the model should run eagerly.
sample_weights
state_updates Returns the updates from all layers that are stateful.
stateful
submodules Sequence of all sub-modules.
trainable
trainable_variables Sequence of variables owned by this module and it’s submodules.
trainable_weights
updates
variables Returns the list of all layer variables/weights.
weights Returns the list of all layer variables/weights.
__init__(input_res, min_res, kernel_size, initial_filters, filters_cap, channels, use_dropout_encoder=True, use_dropout_decoder=True, dropout_prob=0.3, encoder_non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.LeakyReLU'>, decoder_non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.ReLU'>, use_attention=False)[source]

Build the Semantic UNet model.