PatchDiscriminator

Inheritance Diagram

Inheritance diagram of ashpy.models.convolutional.discriminators.PatchDiscriminator

class ashpy.models.convolutional.discriminators.PatchDiscriminator(input_res, min_res, kernel_size, initial_filters, filters_cap, use_dropout=True, dropout_prob=0.3, non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.LeakyReLU'>, normalization_layer=<class 'ashpy.layers.instance_normalization.InstanceNormalization'>, use_attention=False)[source]

Bases: ashpy.models.convolutional.encoders.Encoder

Pix2Pix discriminator.

The last layer is an image in which each pixels is the probability of being fake or real.

Examples

x = tf.ones((1, 64, 64, 3))

# instantiate the PathDiscriminator
patchDiscriminator = PatchDiscriminator(input_res=64,
                                        min_res=16,
                                        kernel_size=5,
                                        initial_filters=64,
                                        filters_cap=512,
                                        )

# evaluate passing x
output = patchDiscriminator(x)

# the output shape is the same as the input shape
print(output.shape)
(1, 12, 12, 1)

Methods

__init__(input_res, min_res, kernel_size, …) Patch Discriminator used by pix2pix.
call(inputs[, training, return_features]) Forward pass of the PatchDiscriminator.

Attributes

activity_regularizer Optional regularizer function for the output of this layer.
dtype
dynamic
inbound_nodes Deprecated, do NOT use! Only for compatibility with external Keras.
input Retrieves the input tensor(s) of a layer.
input_mask Retrieves the input mask tensor(s) of a layer.
input_shape Retrieves the input shape(s) of a layer.
input_spec Gets the network’s input specs.
layers
losses Losses which are associated with this Layer.
metrics Returns the model’s metrics added using compile, add_metric APIs.
metrics_names Returns the model’s display labels for all outputs.
name Returns the name of this module as passed or determined in the ctor.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
outbound_nodes Deprecated, do NOT use! Only for compatibility with external Keras.
output Retrieves the output tensor(s) of a layer.
output_mask Retrieves the output mask tensor(s) of a layer.
output_shape Retrieves the output shape(s) of a layer.
run_eagerly Settable attribute indicating whether the model should run eagerly.
sample_weights
state_updates Returns the updates from all layers that are stateful.
stateful
submodules Sequence of all sub-modules.
trainable
trainable_variables Sequence of variables owned by this module and it’s submodules.
trainable_weights
updates
variables Returns the list of all layer variables/weights.
weights Returns the list of all layer variables/weights.
__init__(input_res, min_res, kernel_size, initial_filters, filters_cap, use_dropout=True, dropout_prob=0.3, non_linearity=<class 'tensorflow.python.keras.layers.advanced_activations.LeakyReLU'>, normalization_layer=<class 'ashpy.layers.instance_normalization.InstanceNormalization'>, use_attention=False)[source]

Patch Discriminator used by pix2pix.

When min_res=1 this is the same as a standard fully convolutional discriminator.

Parameters:
  • input_res (int) – Input Resolution.
  • min_res (int) – Minimum Resolution reached by the discriminator.
  • kernel_size (int) – Kernel Size used in Conv Layer.
  • initial_filters (int) – number of filters in the first convolutional layer.
  • filters_cap (int) – Maximum number of filters.
  • use_dropout (bool) – whether to use dropout.
  • dropout_prob (float) – probability of dropout.
  • non_linearity (tf.keras.layers.Layer) – non linearity used in the model.
  • normalization_layer (tf.keras.layers.Layer) – normalization layer used in the model.
  • use_attention (bool) – whether to use attention.
_add_building_block(filters, use_bn=False)[source]

Construct the core of the tf.keras.Model.

The layers specified here get added to the tf.keras.Model multiple times consuming the hyper-parameters generated in the _get_layer_spec().

Parameters:filters (int) – Number of filters to use for this iteration of the Building Block.
_add_final_block(output_shape)[source]

Prepare the results of _add_building_block() for the final output.

Parameters:output_shape (int) – Amount of units of the last tf.keras.layers.Dense
call(inputs, training=False, return_features=False)[source]

Forward pass of the PatchDiscriminator.