InstanceNormalization¶
Inheritance Diagram
-
class
ashpy.layers.instance_normalization.
InstanceNormalization
(eps=1e-06, beta_initializer='zeros', gamma_initializer='ones')[source]¶ Bases:
tensorflow.python.keras.engine.base_layer.Layer
Instance Normalization Layer (used by Pix2Pix [1] and Pix2PixHD [2] ).
Basically it’s a normalization done at instance level. The implementation follows the basic implementation of the Batch Normalization Layer.
Direct Usage:
x = tf.ones((1, 10, 10, 64)) # instantiate attention layer as model. normalization = InstanceNormalization() # evaluate passing x. output = normalization(x) # the output shape is. # the same as the input shape. print(output.shape)
Inside a Model:
def MyModel(): inputs = tf.keras.layers.Input(shape=[None, None, 64]) normalization = InstanceNormalization() return tf.keras.Model(inputs=inputs, outputs=normalization(inputs)) x = tf.ones((1, 10, 10, 64)) model = MyModel() output = model(x) print(output.shape)
(1, 10, 10, 64)
[1] Image-to-Image Translation with Conditional Adversarial Networks https://arxiv.org/abs/1611.07004 [2] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs https://arxiv.org/abs/1711.11585 Methods
__init__
([eps, beta_initializer, …])Initialize the layer. build
(input_shape)Assemble the layer. call
(inputs[, training])Perform the computation. Attributes
activity_regularizer
Optional regularizer function for the output of this layer. dtype
dynamic
inbound_nodes
Deprecated, do NOT use! Only for compatibility with external Keras. input
Retrieves the input tensor(s) of a layer. input_mask
Retrieves the input mask tensor(s) of a layer. input_shape
Retrieves the input shape(s) of a layer. input_spec
losses
Losses which are associated with this Layer. metrics
name
Returns the name of this module as passed or determined in the ctor. name_scope
Returns a tf.name_scope instance for this class. non_trainable_variables
non_trainable_weights
outbound_nodes
Deprecated, do NOT use! Only for compatibility with external Keras. output
Retrieves the output tensor(s) of a layer. output_mask
Retrieves the output mask tensor(s) of a layer. output_shape
Retrieves the output shape(s) of a layer. submodules
Sequence of all sub-modules. trainable
trainable_variables
Sequence of variables owned by this module and it’s submodules. trainable_weights
updates
variables
Returns the list of all layer variables/weights. weights
Returns the list of all layer variables/weights. -
__init__
(eps=1e-06, beta_initializer='zeros', gamma_initializer='ones')[source]¶ Initialize the layer.
Parameters: Return type: None